Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Anal Chim Acta ; 1229: 340290, 2022 Oct 09.
Article in English | MEDLINE | ID: covidwho-1995928

ABSTRACT

The COVID-19 pandemic has emphasized the need for accurate, rapid, point-of-care diagnostics to control disease transmission. We have developed a simple, ultrasensitive single-particle surface-enhanced Raman spectroscopy (SERS) immunoassay to detect the SARS-CoV-2 spike protein in saliva. This assay relies on the use of single chain Fv (scFv) recombinant antibody expressed in E. coli to bind the SARS-CoV-2 spike protein. Recombinant scFv labeled with a SERS-active dye in solution is mixed with unlabeled scFv conjugated to gold-coated magnetic nanoparticles and a sample to be tested. In the presence of the SARS-CoV-2 spike protein, immunocomplexes form and concentrate the labeled scFv close to the gold surface of the nanoparticles, causing an increased SERS signal. The assay detects inactivated SARS-CoV-2 virus and spike protein in saliva at concentrations of 1.94 × 103 genomes mL-1 and 4.7 fg mL-1, respectively, making this direct detection antigen test only 2-3 times less sensitive than some qRT-PCR tests. All tested SARS-CoV-2 spike proteins, including those from alpha, beta, gamma, delta, and omicron variants, were detected without recognition of the closely related SARS and MERS spike proteins. This 30 min, no-wash assay requires only mixing, a magnetic separation step, and signal measurements using a hand-held, battery-powered Raman spectrometer, making this assay ideal for ultrasensitive detection of the SARS-CoV-2 virus at the point-of-care.


Subject(s)
COVID-19 , Single-Chain Antibodies , COVID-19/diagnosis , Escherichia coli , Gold , Humans , Immunoassay , Pandemics , SARS-CoV-2 , Saliva/chemistry , Spike Glycoprotein, Coronavirus
2.
ACS Sens ; 7(3): 866-873, 2022 03 25.
Article in English | MEDLINE | ID: covidwho-1735187

ABSTRACT

Rapid, sensitive, on-site identification of SARS-CoV-2 infections is an important tool in the control and management of COVID-19. We have developed a surface-enhanced Raman scattering (SERS) immunoassay for highly sensitive detection of SARS-CoV-2. Single-chain Fv (scFv) recombinant antibody fragments that bind the SARS-CoV-2 spike protein were isolated by biopanning a human scFv library. ScFvs were conjugated to magnetic nanoparticles and SERS nanotags, followed by immunocomplex formation and detection of the SARS-CoV-2 spike protein with a limit of detection of 257 fg/mL in 30 min in viral transport medium. The assay also detected B.1.1.7 ("alpha"), B.1.351 ("beta"), and B.1.617.2 ("delta") spike proteins, while no cross-reactivity was observed with the common human coronavirus HKU1 spike protein. Inactivated whole SARS-CoV-2 virus was detected at 4.1 × 104 genomes/mL, which was 10-100-fold lower than virus loads typical of infectious individuals. The assay exhibited higher sensitivity for SARS-CoV-2 than commercial lateral flow assays, was compatible with viral transport media and saliva, enabled rapid pivoting to detect new virus variants, and facilitated highly sensitive, point-of-care diagnosis of COVID-19 in clinical and public health settings.


Subject(s)
COVID-19 , Point-of-Care Systems , SARS-CoV-2/isolation & purification , Single-Chain Antibodies , COVID-19/diagnosis , Humans , Spike Glycoprotein, Coronavirus
SELECTION OF CITATIONS
SEARCH DETAIL